
International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

42

ANALYZING MALWARE EVASION

TECHNIQUES: A COMPREHENSIVE STUDY OF

DETECTION STRATEGIES IN ANTIVIRUS

SOFTWARE

Maupa Samanta, Piyush Pandey, Aditya Pandey

 CS & E (Cybersecurity) TCET

Mumbai, India

Mr. Aniket Mishra

Assistant Professor CS & (Cybersecurity) TCET

Mumbai, India

Abstract— This paper examines the critical role of

antivirus software in combating malware while

addressing the growing challenges posed by

sophisticated evasion techniques. It explores various

antivirus detection methods, including signature-based,

heuristic, and behavior-based analyses, alongside

advanced evasion strategies employed by attackers, such

as process injection, code obfuscation, and privilege

escalation. The theoretical background provides insights

into the evolution of malware and the limitations of

conventional detection approaches. The methodology

outlines how these evasion techniques operate,

supported by an analysis section that presents graphs

and charts illustrating their effectiveness, particularly in

malware types like worms. The findings indicate that

current antivirus solutions struggle against multi-stage

and adaptive malware, highlighting the urgent need for

more dynamic security measures. The paper concludes

by discussing future directions for research and

improvements in antivirus strategies to effectively

counter the evolving threat landscape.

Keywords— Malware Detection, Process Injection,

Obfuscation, Polymorphic, Metamorphic

I. INTRODUCTION

 As cyber threats continue to evolve, antivirus software

remains a crucial line of defense for both personal and

organizational devices against malware. With the rise of

sophisticated cyber attacks, traditional antivirus solutions

face significant challenges posed by advanced evasion

techniques employed by malicious actors. This paper aims

to explore the vulnerabilities and limitations of modern

antivirus programs by analyzing both detection techniques

and prevalent malware evasion strategies. We will begin by

outlining the primary detection methods utilized by antivirus

software, including signature-based detection, heuristic

analysis, and behavior monitoring. Following this, we will

delve into the various evasion techniques that malware

authors employ, such as code obfuscation, process injection,

and privilege escalation, which enable malicious software to

bypass detection. By examining the theoretical background

and the implications of these evolving threats, this study

underscores the need for more dynamic and adaptive

security solutions to combat the increasingly complex

landscape of malware. Through a comprehensive analysis of

current antivirus capabilities and the tactics used by

attackers, we aim to provide insights into the future of

cybersecurity strategies.

Antivirus detection techniques play a crucial role in

identifying and neutralizing malware threats. One of the

most common methods is signature-based detection, which

relies on a database of known malware signatures—unique

strings of data that correspond to specific malware. This

technique scans files and compares their signatures against

the database to detect threats. While signature-based

detection is effective for identifying known threats, it has

notable limitations, particularly against polymorphic and

metamorphic malware. These types of malware can change

their code and structure to evade detection, rendering

traditional signature-based methods ineffective.

Antivirus detection techniques are essential for identifying

and mitigating malware threats. Signature-based detection

relies on a database of known malware signatures to scan

and identify threats but struggles against polymorphic and

metamorphic malware that can alter their code to evade

detection. Heuristic analysis evaluates the behavior and

characteristics of files to uncover potential threats, even if

their signatures are unknown; however, this method can

produce false positives, leading to disruptions in legitimate

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

43

processes. Lastly, behavior monitoring observes the runtime

activities of applications to detect suspicious behaviors,

offering real-time threat detection, but it can be resource-

intensive and affect system performance. Balancing

effectiveness with resource utilization remains a key

challenge in developing robust antivirus solutions.

Antivirus software is important for protecting computers,

but it has some limitations. It mainly looks for known types

of malware, so it can struggle with new threats. Sometimes,

it might mistakenly think that safe files are harmful or miss

sophisticated threats. There's also a challenge with "zero-

day" attacks, which are new and unknown exploits.

Antivirus can find it hard to detect and stop these new

threats. Another issue is with polymorphic malware that can

change its code to avoid detection. Encryption and

obfuscation methods used by malware make it even more

challenging to catch them. Antivirus software can also use a

lot of computer resources, slowing down the system. It can't

fully protect against people falling for tricks in social

engineering attacks. Advanced and targeted attacks, like

APTs, may bypass traditional antivirus defenses.

II. BACKGROUND

The evolution of malware has significantly transformed the

cybersecurity landscape, shifting from simple forms of

malicious software to complex and targeted attacks that

exploit intricate vulnerabilities within systems. Initially,

malware such as viruses and worms primarily aimed to

disrupt operations or corrupt data. However, with the advent

of the internet, the distribution and functionality of malware

have expanded dramatically. Modern malware encompasses

a wide variety of forms, including ransomware, which

encrypts user data and demands payment for decryption, and

spyware, which stealthily collects sensitive information

without the user's consent. Among the most concerning

developments are advanced persistent threats (APTs), which

are characterized by their prolonged and targeted nature,

often directed at high-value targets such as government

institutions and large corporations. Furthermore,

contemporary malware often employs polymorphic and

metamorphic characteristics, allowing it to modify its code

and evade detection by traditional antivirus solutions.

Antivirus software relies on several core techniques for

detecting threats, each with inherent advantages and

limitations. Signature-based detection is one of the

foundational methods, utilizing a database of known

malware signatures to identify threats. While this approach

effectively recognizes previously cataloged malware, it

proves inadequate against novel or mutated variants, thereby

leaving systems vulnerable to zero-day exploits. To address

this limitation, heuristic analysis has been developed, which

assesses the behavior and attributes of files to detect

potential threats based on anomalous behavior patterns.

Although heuristic methods can identify previously

unknown malware, they are susceptible to false positives, as

benign applications may exhibit similar characteristics.

Another technique, behavior-based detection, involves real-

time monitoring of system processes for unusual activities.

By analyzing behaviors such as unauthorized file access or

abnormal network traffic, behavior-based detection can

identify malicious actions. However, this method often

requires significant computational resources, which can

impact overall system performance.

In response to the limitations of conventional antivirus

detection methods, attackers have devised various evasion

techniques that complicate threat detection. Code

obfuscation is a prevalent method, whereby malware

developers alter the appearance of the code to obscure its

true intent, making it challenging for antivirus programs to

recognize it. Techniques such as encryption, packing, and

polymorphism are commonly employed to create malware

variants that evade signature-based detection. Process

injection is another sophisticated technique used by

attackers, allowing them to insert malicious code into the

address space of legitimate processes. This not only

enhances the stealth of the malware but also enables it to

operate under the guise of trusted applications, further

complicating detection efforts. Additionally, attackers often

utilize privilege escalation techniques to gain elevated

access rights, enabling them to disable security features,

alter system configurations, orexfiltrate sensitive

information. Common methods for privilege escalation

include exploiting software vulnerabilities and

misconfigurations.

The ongoing evolution of malware, coupled with the

challenges faced by antivirus technologies, underscores the

urgent need for innovative and adaptive security measures.

As attackers continue to refine their strategies, traditional

detection methods must evolve to incorporate advanced

techniques that address the sophisticated nature of modern

threats. This necessity calls for a multi-faceted approach to

cybersecurity that integrates behavioral analysis, threat

intelligence, and continuous adaptation to emerging

vulnerabilities. Understanding the theoretical foundations of

malware and antivirus interactions is critical for developing

effective countermeasures, and ongoing research and

innovation in this field are essential for enhancing overall

cybersecurity resilience and safeguarding systems against

the increasingly complex threat landscape.

III. METHODOLOGY

The methodology employed in this research focuses into the

sophisticated tactics employed by modern malware to evade

detection and compromise security systems. Central to this

analysis are three primary techniques: process injection,

obfuscation, and defense evasion, each designed to exploit

vulnerabilities in antivirus and security tools. These

methods not only enable malware to infiltrate systems

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

44

covertly but also allow it to sustain operations by avoiding

detection for extended periods. Process injection involves

the insertion of malicious code into trusted processes,

allowing the malware to operate under the radar of antivirus

systems. Obfuscation techniques, which alter or disguise the

malware's code, make it increasingly difficult for static and

heuristic-based detection methods to recognize the threat.

Defense evasion includes tactics such as disabling antivirus

software, exploiting system privileges, or mimicking

legitimate applications to bypass security measures.

Through this exploration, we aim to provide a deeper

understanding of how these advanced techniques undermine

the effectiveness of current antivirus solutions, necessitating

the development of more adaptive, behavior-based defenses.

A. Process Injection

Process injection is a widely used defense evasion technique

often employed by malware and adversaries to execute

custom code within the address space of another process.

This method significantly enhances the stealth of malicious

operations and, in many cases, also helps achieve

persistence on the target system. By running malware code

under the guise of a legitimate process, attackers can avoid

detection by traditional antivirus and monitoring tools.

There are various process injection techniques, each

exploiting different vulnerabilities and system mechanisms

to achieve this evasion. The study of these techniques,

through reverse engineering and malware analysis, is crucial

for improving detection and defense strategies.

Understanding the nuances of how malware leverages

process injection provides valuable insights for fortifying

systems against these sophisticated attacks.

Fig.1.Process Injection Techniques

1. CLASSIC DLL INJECTION VIA

CREATEREMOTETHREAD AND LOADLIBRARY

Classic DLL injection via `CreateRemoteThread` and

`LoadLibrary` is a common malware technique where a

malicious DLL is written into the virtual memory of a target

process, such as `svchost.exe`. The malware identifies the

target process using APIs like `CreateToolhelp32Snapshot`,

allocates memory in the process using `VirtualAllocEx`, and

writes the DLL path via `WriteProcessMemory`. It then

creates a new thread in the target process using

`CreateRemoteThread`, `NtCreateThreadEx`, or

`RtlCreateUserThread`, instructing it to execute the DLL.

Although this method is widely flagged by security tools

due to its reliance on a malicious DLL on disk, it remains a

frequently used evasion technique.

2. PORTABLE EXECUTABLE INJECTION (PE

INJECTION)

Portable Executable (PE) injection is a stealthy malware

technique that involves injecting malicious code directly

into the memory of a target process, eliminating the need to

drop a DLL on disk. The malware first allocates memory in

the target process using `VirtualAllocEx`, and then writes its

malicious code using `WriteProcessMemory`. However,

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

45

since the injected code will have a new base address in the

target process, the malware must adjust the fixed addresses

by referencing the process’s relocation table, ensuring the

code runs correctly. This makes PE injection more complex

but harder to detect than traditional DLL injection.

PE injection is similar to techniques like reflective DLL

injection and memory modules, which also avoid disk-based

detection by executing directly in memory. Reflective DLL

injection maps the DLL into memory without using

Windows APIs like `CreateRemoteThread`, while memory

modules rely on an external loader to achieve this. These

approaches make the malware even more difficult to detect

and analyze. PE injection is widely used by crypters to

obfuscate and encrypt malware, enhancing their stealth

capabilities and making them more challenging to reverse-

engineer and defend against.

3. PROCESS HOLLOWING (A.K.A PROCESS

REPLACEMENT AND RUNPE)

Process hollowing, also known as process replacement or

RunPE, is a malware technique where the legitimate code of

a target process is removed from memory and replaced with

malicious code. The malware begins by creating a new

process in a suspended state using `CreateProcess` with the

`CREATE_SUSPENDED` flag. The legitimate code of the

target process, such as `svchost.exe`, is then unmapped from

memory using APIs like `ZwUnmapViewOfSection` or

`NtUnmapViewOfSection`. Once the target process’s

memory is hollowed out, the malware allocates new

memory using `VirtualAllocEx` and injects its own

malicious code via `WriteProcessMemory`.

After injecting the code, the malware updates the process’s

entry point using `SetThreadContext`, ensuring that the new,

malicious code is executed. Finally, the suspended process

is resumed by calling `ResumeThread`, allowing the

injected malware to run in the context of the hollowed-out

process. This technique is particularly effective for evading

detection as it uses a legitimate process to execute malicious

payloads, making it difficult for security solutions to detect

the intrusion.

4. THREAD EXECUTION HIJACKING (A.K.A

SUSPEND, INJECT, AND RESUME (SIR))

Thread execution hijacking, also known as Suspend, Inject,

and Resume (SIR), is a stealthy technique used by malware

to inject malicious code into a running process by hijacking

its active threads. The process begins by suspending a

legitimate process's thread using `SuspendThread`. Once the

thread is suspended, the malware manipulates the thread’s

execution context by calling `GetThreadContext` to retrieve

the thread’s current state, such as its registers and

instruction pointer. This

context is then modified to redirect the thread’s execution to

the malware’s malicious code.

After obtaining control of the thread, the malware injects its

payload into the target process's memory space using

`WriteProcessMemory`. The next step is to update the

thread’s context with the address of the injected code using

`SetThreadContext`, ensuring that the hijacked thread will

execute the malware’s code when it resumes. Finally, the

thread is resumed using `ResumeThread`, allowing the

malicious code to run under the guise of the legitimate

process. This method is effective because it hijacks a

process that is already running, avoiding the creation of a

new process, which can attract attention from security tools.

5. HOOK INJECTION VIA SETWINDOWSHOOKEX

Hook injection via `SetWindowsHookEx` allows malware

to inject a malicious DLL into a target process by

intercepting system events like keyboard or mouse inputs.

The function sets up a hook routine that executes the

malware's code when a specified event is triggered.

Malware often uses `LoadLibrary` to load the DLL and

targets specific threads to reduce noise, making detection

harder. This technique is seen in malware like Locky

Ransomware, where the malicious DLL is executed as part

of normal system operations.

6. INJECTION AND PERSISTENCE VIA REGISTRY

MODIFICATION (E.G. APPINIT_DLLS,

APPCERTDLLS, IFEO)

Malware can use `AppInit_DLLs`, `AppCertDlls`, and

`Image File Execution Options (IFEO)` registry keys for

both code injection and persistence. The `AppInit_DLLs`

key allows malware to inject a malicious DLL into any

process that loads `User32.dll`, a common graphical library.

Modifying this key ensures the DLL is loaded by most

processes, as shown with the Ginwui trojan. Similarly,

`AppCertDlls` loads malicious DLLs into processes using

APIs like `CreateProcess`. Lastly, `IFEO` is used for

debugging but can be exploited to attach a malicious

program to any executable by modifying the "Debugger"

value, as demonstrated by the Diztakun trojan.

7. APC INJECTION AND ATOMBOMBING

Malware can exploit Asynchronous Procedure Calls (APC)

to force another thread to run malicious code by queuing it

in the target thread's APC queue. When the thread enters an

alertable state (e.g., using functions like `SleepEx` or

`WaitForSingleObjectEx`), the malware's code gets

executed. The process involves calling `OpenThread` to get

the target thread's handle and then `QueueUserAPC` to

queue the malicious function, often using `LoadLibraryA` to

load a DLL. AtomBombing, used by Dridex V4, extends

this by writing into another process's memory via atom

tables during APC injection.

8. EXTRA WINDOW MEMORY INJECTION (EWMI)

VIA SETWINDOWLONG

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

46

Extra Window Memory Injection (EWMI) is a technique

used by malware, such as Gapz and PowerLoader, to

execute malicious code in the Explorer tray window’s extra

window memory (EWM). This technique involves writing

shellcode into a shared section of `explorer.exe` and using

`SetWindowLong` to change a function pointer to point to

the shellcode. Malware can either create a new shared

section or use an existing one to write the shellcode. It then

modifies the EWM of `Shell_TrayWnd` using

`GetWindowLong` and `SetWindowLong`. To trigger the

execution of the injected code, the malware calls

`SendNotifyMessage`, which causes `Shell_TrayWnd` to

transfer control to the shellcode, executing the malware's

instructions.

9. INJECTION USING SHIMS

Microsoft provides shims to enhance backward

compatibility for developers, allowing them to apply fixes to

applications without rewriting code. Shims hook into APIs,

enabling developers to instruct the operating system on how

to handle specific executables. However, malware can

exploit shims for both persistence and code injection.

When a binary is loaded, the Shim Engine checks for

shimming databases to apply relevant fixes, including

security-related options like DisableNX, DisableSEH, and

InjectDLL. Malware can install shimming databases using

various methods, one of which is executing `sdbinst.exe`

with a reference to a malicious SDB file. For instance, the

adware ―Search Protect by Conduit‖ utilizes a shim to

achieve persistence and injection by applying an InjectDLL

shim into Google Chrome, loading `vc32loader.dll`.

Analysis of shimming databases can be conducted using

tools such as python-sdb.

10. IAT HOOKING AND INLINE HOOKING (A.K.A

USERLAND ROOTKITS)

IAT hooking and inline hooking are commonly referred to

as userland rootkits, techniques that malware employs to

intercept and alter the behavior of legitimate applications.

IAT Hooking involves changing the Import Address Table

(IAT) of an application. When the application calls an API

located in a DLL, the malware replaces the original function

with its own, effectively redirecting the call. For instance, in

the case of the malware FinFisher, it modifies the IAT entry

for CreateWindowEx, ensuring that its malicious code

executes instead of the legitimate API. Inline Hooking, on

the other hand, involves modifying the API function

directly. This technique allows malware to change the code

within the targeted API, giving it control over the execution

flow. Both techniques enable malware to manipulate system

behavior, making them powerful tools for stealth and

control.

B. Obfuscation

The complex obfuscation strategies employed by various

types of advanced malware, including encrypted,

oligomorphic, polymorphic, and metamorphic variants.

These obfuscation techniques, such as dead-code insertion,

register reassignment, subroutine reordering, instruction

substitution, code transposition, and code integration, are

extensively used to evade detection by security tools. The

methodology consists of systematic analyses to identify and

classify evasion techniques, facilitating the development of

robust detection strategies that extend beyond traditional

signature-based methods.

Fig.2.Obfuscation Techniques

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

47

1. Analyzing Encrypted Malware

Encrypted malware often utilizes a constant decryptor

paired with a dynamically encrypted payload, keeping the

main body hidden until runtime. The research will

commence with static reverse engineering of various

encrypted malware samples using tools like IDA Pro and

Radare2 to disassemble the constant decryptor and extract

its logic. The primary objective is to identify static patterns

in the decryptor's code that can serve as indicators of

compromise. The malware authors may use different keys

for each infection, the methodology will employ

cryptographic analysis techniques to detect encryption

methods and utilize entropy analysis to pinpoint encrypted

payload sections. The research will focus on identifying

specific patterns, such as loop constructs, XOR operations,

and key scheduling algorithms within the decryptor

structure. Pattern recognition algorithms will correlate these

patterns with known decryption routines, ultimately

enabling the generation of a signature based on the constant

code structure for early-stage detection of encrypted

malware.

2. Examining Oligomorphic and Polymorphic Malware

Oligomorphic and polymorphic malware represent more

sophisticated threats due to their ability to modify

decryptors with each iteration. Oligomorphic malware

generates a limited set of decryptors, while polymorphic

malware creates extensive variants through obfuscation

techniques. For oligomorphic malware, a comparative

analysis using tools like OllyDbg will identify minor

mutations in the decryptor's code. The research will

categorize variations through control flow graph (CFG)

comparison techniques, allowing the identification of unique

control structures that remain constant despite superficial

alterations. CFG analysis will be augmented with frequency

analysis of opcode sequences to detect recurring patterns

indicative of oligomorphic malware.

In studying polymorphic malware, the methodology will

delve into mutation engines, such as "The Mutation Engine

(MtE)," which generates a vast array of decryptors. This

phase will involve constructing a mutation engine model by

disassembling samples to identify employed obfuscation

techniques, including dead-code insertion, register

reassignment, instruction substitution, and subroutine

reordering. Opcode substitution tables will be utilized to

detect changes in equivalent instructions, while register

reassignment patterns will reveal swapping patterns.

Semantic analysis tools will help understand how register

reassignment impacts overall program behavior, leading to a

model capturing behavioral consistency across polymorphic

malware generations.

3. Investigating Metamorphic Malware Using

Obfuscation Techniques

The Obfuscation Technique Analysis encompasses several

critical strategies for understanding and detecting advanced

malware. First, dead-code insertion will be addressed by

identifying ineffective instruction sequences, such as no-

operations (nop) or unused assignments, which modify the

code's appearance without affecting its functionality.

Automated scripts will be developed to strip these

instructions, generating a simplified version for the creation

of behavioral signatures. Next, register reassignment will

utilize register dependency graphs to map variable flow,

allowing the determination of equivalency classes among

different code segments. This aims to develop a heuristic

that captures behavior irrespective of specific register usage.

The analysis will also focus on subroutine reordering and

code transposition, wherein control flow normalization

techniques will be employed. This involves extracting

subroutine control flows and comparing them to a baseline

model, with graph isomorphism algorithms facilitating the

detection of rearranged subroutines that retain identical

functionalities. Additionally, an instruction substitution

dictionary will be constructed to match equivalent

instruction sequences, thereby enabling the detection of

metamorphic malware that exploits this technique to evade

signature-based detection. Lastly, code integration will be

examined through binary code similarity analysis to identify

integrated malware components within a host program. This

will involve segmenting the code into granular units and

applying similarity hashing techniques, such as ssdeep and

TLSH, to enhance detection capabilities.

C. Defense Evasion

Defense evasion refers to techniques used by adversaries to

bypass security measures and avoid detection while

maintaining unauthorized access to systems and networks.

This involves exploiting vulnerabilities, manipulating

authentication mechanisms, and leveraging valid accounts to

conceal malicious activities. Attackers may also evade

analysis environments like sandboxes to prevent their

malware from being scrutinized. Understanding these tactics

is crucial for organizations to enhance their security

frameworks and develop effective detection and response

strategies against sophisticated cyber threats.

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

48

Fig.3.Defense Evasion Techniques

1. Abuse Elevation Control Mechanism

The Abuse Elevation Control Mechanism encompasses a

variety of techniques employed by adversaries to

circumvent security measures designed to restrict user

privileges. One prevalent method is the exploitation of

applications with setuid and setgid bits, particularly in

UNIX-like operating systems. When these bits are set, an

application executes with the privileges of the file's owner

or group rather than the user running the application. This

allows adversaries to run malicious code under elevated

privileges, granting them greater control over the system.

Additionally, adversaries often bypass Windows User

Account Control (UAC), a feature that prompts users for

confirmation before allowing applications to run with

elevated privileges. By leveraging vulnerabilities or social

engineering tactics, they can execute processes that escalate

their permissions without user consent. Techniques such as

sudo caching on Linux allow adversaries to execute

commands as other users or escalate privileges by using

previously entered credentials. Furthermore, adversaries

may utilize APIs like Authorization Execute With

Privileges, which is designed to facilitate operations

requiring root privileges. However, this API does not

adequately verify the integrity of the requesting program,

allowing malicious applications to request elevated

permissions. In cloud environments, adversaries exploit

misconfigured permissions to gain temporary elevated

access to resources, and on macOS systems, they can

manipulate the Transparency, Consent, and Control (TCC)

service to execute malicious applications with higher

permissions, thus bypassing protective measures.

2. Use of Alternate Authentication Material

The use of alternate authentication material is another

critical defense evasion technique. Adversaries can leverage

stolen application access tokens, which are often used to

authenticate users without requiring a password. By

hijacking these tokens, they can access sensitive information

and services without triggering standard authentication

processes. Another common tactic is the "pass the hash"

method, where attackers use stolen password hashes to

authenticate to systems without needing the original

cleartext password. This technique allows them to bypass

traditional authentication methods, making it easier for them

to move laterally within a network. Similarly, adversaries

may employ the "pass the ticket" approach, which involves

using stolen Kerberos tickets to authenticate to systems.

This method is particularly effective in environments that

rely on Kerberos for authentication, as it enables lateral

movement without needing the victim's password.

Additionally, adversaries can exploit stolen web session

cookies to gain unauthorized access to web applications,

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

49

bypassing multi-factor authentication protocols and thus

facilitating unauthorized actions within secured

environments.

3. Valid Accounts

Valid accounts represent a significant vector for defense

evasion. Adversaries may compromise credentials of default

accounts, such as the Administrator or Guest accounts in

Windows systems. These accounts are often poorly secured

and may have widespread access across a network, making

them attractive targets. Moreover, domain accounts,

managed by Active Directory, can be abused to gain initial

access, maintain persistence, escalate privileges, or evade

defenses. Since domain accounts typically have permissions

across multiple systems and applications, their compromise

can result in substantial damage to an organization. Local

accounts, configured for specific users or services on

individual systems, can also be exploited for unauthorized

access. In cloud environments, valid cloud accounts can

grant adversaries the ability to perform actions that lead to

data exfiltration or further compromise. Compromised

credentials may not only facilitate access to systems but can

also enable adversaries to maintain a low profile, avoiding

detection by security monitoring tools, as their activities

appear legitimate.

4. Virtualization/Sandbox Evasion

Adversaries frequently employ virtualization and sandbox

evasion techniques to detect and avoid environments

designed for analysis. By executing system checks, they can

identify artifacts indicative of virtual machines (VMEs) or

sandbox environments. If a VME is detected, adversaries

may alter the behavior of their malware to disengage from

the victim or conceal essential functionalities to evade

detection by security researchers. User activity-based checks

can also be employed to discern whether the malware is

operating in an analysis environment, allowing adversaries

to modify their tactics accordingly. Additionally, time-based

evasion techniques can be used, where attackers measure

properties such as system uptime or the system clock to

identify automated analysis environments that may only run

for limited durations. By employing these evasion tactics,

adversaries can manipulate their malware’s behavior,

ensuring it remains undetected during security assessments.

5. Weaken Encryption

Weakening encryption is a tactic used by adversaries to

facilitate easier access to sensitive data. They may reduce

the key space used in encrypted communications, which

effectively lowers the computational effort required to

decrypt transmitted data. This can be achieved by exploiting

vulnerabilities in the encryption algorithms or by employing

brute-force techniques on weak keys. Furthermore,

adversaries may disable dedicated hardware encryption

within network devices, which often provides a more robust

level of security compared to software encryption. By

leveraging weaknesses in software-based encryption

methods, adversaries can more easily collect, manipulate,

and exfiltrate transmitted data. This undermines the

confidentiality and integrity of communications, allowing

adversaries to gain access to sensitive information without

triggering alarms associated with standard decryption

efforts.

6. File and Directory Permissions Modification

Adversaries may modify file and directory permissions to

evade access controls and access protected files. In systems

where file permissions are governed by Access Control

Lists (ACLs), adversaries can manipulate these permissions

to gain unauthorized access. On Windows systems,

modifications to file and directory permissions may involve

altering ACL settings to grant themselves or their malware

access to sensitive files, thereby facilitating further attacks

or data exfiltration. Similarly, on Linux and macOS,

adversaries can exploit file permission settings to execute

malicious actions undetected. By adjusting permissions to

evade security protocols, adversaries can achieve elevated

privileges and operate with impunity, increasing the

potential damage they can inflict on compromised systems.

Tools used for Antivirus evasion

Various tools and methodologies have emerged that enable

attackers to bypass security mechanisms such as antivirus

software, intrusion detection systems (IDS), and firewalls.

One of the key strategies employed is process injection,

where malicious code is injected into legitimate processes to

evade detection. Tools like Metasploit, Cobalt Strike, and

Shellter facilitate different types of process injection, such

as DLL injection and process hollowing, allowing the

malware to operate under the guise of a trusted process.

Another critical method is obfuscation, which involves

disguising or encrypting malicious payloads to avoid

detection by security software. Tools like Veil and Hyperion

obfuscate malware by encoding its payloads or utilizing

packers like UPX and Themida to compress and encrypt the

executable files. This hinders detection mechanisms that

rely on signature-based analysis by making the malware

appear benign.

Attackers also utilize code signing to make their malicious

software appear legitimate by signing it with stolen or

fraudulent certificates. Tools such as SigThief and BadSign

allow attackers to manipulate or steal digital signatures,

making the malware seem like trusted software. In addition

to code signing, the rise of fileless malware has posed a

significant challenge. Fileless malware, which resides in

memory instead of on disk, makes it difficult for traditional

antivirus solutions to detect or analyze it. Attackers often

use tools like PowerSploit, Mimikatz, and Powershell

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

50

Empire to execute malicious payloads in-memory,

leveraging PowerShell scripts and Windows Management

Instrumentation (WMI) to avoid writing files to disk.

Anti-debugging and anti-virtualization techniques are often

incorporated into malware to detect and evade analysis

environments such as sandboxes and debuggers. Tools like

ScyllaHide and Pafish allow malware to identify virtualized

environments or debugged processes, triggering evasion

tactics to halt execution when such environments are

detected. Similarly, environment awareness techniques,

such as checking system attributes like IP addresses, system

time, or hardware details, allow malware to detect analysis

environments and evade detection.

Additionally, malware can use disabling security tools to

tamper with or terminate antivirus software and firewalls,

rendering them ineffective. Tools such as Process Hacker

and GMER enable attackers to modify registry settings, stop

security services, or terminate security processes to prevent

detection and removal. Another technique, living-off-the-

land (LoL), involves using legitimate system utilities, such

as PowerShell, CertUtil, or WMI, to perform malicious

activities. This makes it more challenging for security

software to distinguish malicious behavior from legitimate

system operations.

More advanced tactics include rootkits, which modify

kernel-level processes to hide malware from detection tools.

Malware such as Necurs and Alureon leverage rootkit

functionality to conceal malicious activities by hiding files,

processes, and network communications. Furthermore,

attackers may employ timestomping, where the creation or

modification timestamps of files are altered to make it

difficult for forensic investigators to track malware

activities. Tools like Metasploit's timestomping module or

NirCmd enable attackers to manipulate file timestamps,

masking the presence of newly created malicious files.

The abuse of elevation control mechanisms is a prominent

technique where attackers exploit legitimate privilege

escalation methods. Tools like UACMe and Juicy Potato

take advantage of Windows User Account Control (UAC)

and token impersonation mechanisms to gain higher

privileges, allowing malware to operate with elevated access

while bypassing standard security restrictions. Each of these

techniques demonstrates the sophisticated means by which

attackers bypass detection and remain persistent in

compromised systems. Understanding these tools and

methods is crucial for developing advanced defensive

mechanisms to detect and mitigate the risks associated with

defense evasion.

IV. ANALYSIS

The analysis of antivirus detection and malware evasion

techniques involves a comprehensive examination of

various methodologies, tools, and their effectiveness in real-

world scenarios. This section delves into the performance of

traditional antivirus solutions against sophisticated malware,

utilizing a combination of quantitative and qualitative

metrics to evaluate their capabilities.

A critical metric for assessing antivirus software is its

detection effectiveness against a wide range of malware.

This involves conducting empirical tests using a diverse set

of malware samples, including traditional viruses, trojans,

ransomware, and contemporary threats employing evasion

techniques. Data collection focuses on the true positive rate,

false positive rate, and overall accuracy of detection

mechanisms. For instance, recent studies have shown that

while signature-based detection remains effective against

known malware, its effectiveness diminishes significantly

against obfuscated and polymorphic variants. Conversely,

heuristic and behavior-based methods exhibit improved

performance in identifying previously unknown threats,

albeit with a higher incidence of false positives.

Fig.4.Total Malware

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

51

This graph shows the cumulative growth of malware and

potentially unwanted applications (PUA) from 2008 to

2024. There is a clear exponential increase in both malware

and PUA, with malware consistently comprising a larger

proportion. By 2024, the total amount of malware has

surpassed 1.2 billion. The consistent increase highlights the

rising prevalence of malware globally, with major surges in

2019 through 2024. This growth could indicate an

increasingly hostile cyber landscape, driven by the

advancement of sophisticated malware and evasion

techniques. It also points to the growing ineffectiveness of

traditional antivirus solutions in halting this steady rise.

Fig.5.New Malware

The above graph tracks the introduction of new malware

and PUA over the same period. While there was a peak

around 2015-2017, the graph shows fluctuations over the

years, with significant spikes in 2019 and 2021. New

malware consistently represents a substantial threat, with

major growth seen in 2021, but there is a slight decrease as

of 2024. These fluctuations might reflect changes in attack

vectors or mitigation strategies. However, the overall trend

suggests that while the rate of new malware creation might

vary, it remainsa persistent and evolving challenge.

Fig.6.Development of Android Malware

The graph focuses on malware targeting Android devices.

There was a noticeable surge in Android malware and PUA

between 2015 and 2017, followed by a decline and

stabilization. The peaks in Android malware development in

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

52

2017 and 2020 indicate key periods where Android devices

were particularly vulnerable, possibly due to gaps in mobile

security or the growing market share of Android devices.

However, from 2021 onwards, there is a notable reduction

in new Android malware and PUA, indicating potential

improvements in Android security protocols or more

effective detection measures for mobile threats.

Fig.7.Development of MacOS Malware

Fig.8.Development of Windows Malware

The overall analysis of malware trends across platforms

reveals a clear, accelerating rise in the complexity and

volume of global cyber threats. From 2008 to 2024, the total

amount of malware has surged past 1.2 billion, with

significant increases in both malware and potentially

unwanted applications (PUA). This exponential growth,

especially between 2019 and 2024, points to the

inadequacies of traditional antivirus solutions that primarily

rely on static, signature-based detection methods. The

fluctuations in new malware creation, peaking in 2015–

2017, followed by spikes in 2019 and 2021, suggest that

attackers are continually refining their techniques, such as

process injection and obfuscation, to bypass detection.

Similarly, Android malware experienced major surges,

particularly in 2016 and 2020, highlighting mobile devices

as a critical attack vector. While Android malware has

slightly decreased in recent years, its persistent presence,

alongside increasing macOS threats, reflects the evolving

nature of cyberattacks across all platforms. Windows, as the

most widely used operating system, remains a dominant

target, with malware growth continuing unabated. Overall,

this analysis underscores the urgent need for more adaptive,

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

53

behavior-based antivirus strategies to combat the rapidly

evolving threat landscape.

Understanding the efficacy of malware evasion techniques

is equally crucial in the analysis. This involves examining

how specific evasion methods, such as code obfuscation and

process injection, impact the success rates of various

antivirus solutions. For example, a comparative analysis can

be conducted to evaluate the detection rates of traditional

antivirus programs against obfuscated malware versus their

performance against non-obfuscated counterparts. Results

typically indicate a significant decrease in detection

effectiveness when faced with obfuscation, underscoring the

need for antivirus solutions to integrate advanced detection

capabilities that can recognize altered code structures.

Furthermore, the analysis may include the examination of

case studies involving real-world attacks that utilized

sophisticated evasion techniques. By analyzing the

techniques employed in successful breaches, researchers can

gain insights into the vulnerabilities exploited by malware

and the shortcomings of existing antivirus defenses.

V. FUTURE SCOPE

The future of antivirus technologies lies in their ability to

adapt to the growing sophistication of malware, especially

as traditional detection methods become less effective

against advanced evasion techniques like code obfuscation,

process injection, and defense evasion. As malware evolves,

antivirus solutions must focus on enhancing their behavioral

detection capabilities through real-time monitoring and

advanced heuristics to identify suspicious activity that may

not match known malware signatures. Additionally,

integrating with global threat intelligence platforms will be

critical for providing timely updates on emerging threats,

allowing for quicker and more accurate responses. The use

of machine learning (ML) is expected to play a significant

role in this evolution, as ML models can be trained to detect

patterns and anomalies in large datasets, enabling more

efficient identification of new and complex malware strains.

However, as malware creators also leverage ML for

evasion, antivirus solutions will need to keep pace by

constantly updating their algorithms and learning models to

outmaneuver adversarial techniques. Furthermore, antivirus

architectures will need to transition towards multi-layered

approaches, incorporating not only traditional detection but

also endpoint detection and response (EDR), intrusion

detection systems (IDS), and cloud-based analytics to

enhance protection against modern threats. These cloud-

based solutions will allow antivirus systems to analyze vast

amounts of data in real-time and ensure continuous updates,

keeping pace with the rapidly changing threat landscape.

Automation will also be a key aspect of future antivirus

technologies, with systems capable of automatically

isolating infected devices, initiating rollbacks, and

implementing self-healing capabilities to restore system

integrity without user intervention. Privacy concerns will

become increasingly significant as behavioral analysis

becomes more intrusive, and striking a balance between

effective malware detection and user privacy will be

essential. New attack surfaces, such as the Internet of

Things (IoT) and serverless computing, are emerging as

prime targets for cybercriminals, necessitating a broader

scope of protection from antivirus solutions to cover these

distributed, resource-constrained environments. In addition,

research into advanced code analysis, dynamic anomaly

detection, and the application of machine learning in both

detection and evasion will be central to the development of

next-generation antivirus tools. As malware continues to

leverage sophisticated techniques and machine learning to

evade detection, antivirus software must evolve to integrate

multiple layers of defense, combining traditional detection

methods with adaptive, intelligent systems capable of

anticipating and countering emerging threats, ensuring a

robust and comprehensive approach to cybersecurity.

VI. CONCLUSION

In conclusion the paper has provided a comprehensive

analysis of advanced malware utilizing complex obfuscation

techniques, including encrypted, oligomorphic,

polymorphic, and metamorphic variants. By systematically

examining the methodologies employed by these malware

types, we have highlighted the significance of understanding

their obfuscation strategies to enhance detection capabilities.

The detailed exploration of each malware category,

supported by static and dynamic analysis, reverse

engineering, and pattern extraction, has illuminated the

challenges posed by these sophisticated threats. Through the

examination of specific techniques such as dead-code

insertion, register reassignment, subroutine reordering,

instruction substitution, and code integration, this study has

laid the groundwork for developing innovative detection

strategies that go beyond traditional signature-based

methods. The integration of machine learning models for

behavioral anomaly detection represents a significant

advancement in identifying and mitigating these evolving

threats. By leveraging features such as system call

sequences, API invocations, and memory access patterns,

the proposed approach aims to provide robust detection

mechanisms that can adapt to the dynamic nature of

advanced malware. Overall, this research underscores the

need for continued innovation in the field of malware

detection, emphasizing that as malware authors evolve their

obfuscation techniques, so too must the defenses designed to

counter them. Future work should focus on refining the

methodologies outlined herein and exploring additional

machine learning techniques to further enhance detection

accuracy and speed. Through ongoing collaboration

between academia and industry, we can strive to stay ahead

of emerging threats and safeguard digital environments

International Journal of Engineering Applied Sciences and Technology, 2025
Vol. 9, Issue 12, ISSN No. 2455-2143, Pages 42-54

Published Online April 2025 in IJEAST (http://www.ijeast.com)

54

against the pervasive risks posed by advanced malware.

VII. REFERENCE

[1] Anderson, Ross. (2001). Security Engineering: A

Guideto Building Dependable Distributed Systems,

Wiley, (pp. 84–102).

[2] Christodorescu, Mihai and Jha, Somesh. (2003).

Static Analysis of Executables to Detect Malicious

Patterns, in Proc. USENIX Security Symposium, (pp.

169–186).

[3] You, Ilsun and Yim, Kangbin. (2010). Malware

Obfuscation Techniques: A Brief Survey, in Proc. 5th

International Conference on Broadband, Wireless

Computing, Communication and Applications, (pp.

297– 300).

[4] Ferrie, Peter. (2008). Attacks on Virtual Machine

Emulators, Symantec White Paper, (pp. 1–28).

[5] Cohen, Fred. (1987). Computer Viruses: Theory and

Experiments, Computers & Security, Vol. 6, (pp. 22–

35).

[6] Egele, Manuel; Scholte, Theodoor; Kirda,

Engin;Kruegel, Christopher. (2008). A Survey on

Automated Dynamic Malware Analysis Techniques

and Tools, ACM Computing Surveys, Vol. 44(2),

Article No. 6.

[7] Bayer, Ulrich et al. (2009). Scalable, Behavior-Based

MalwareClustering,inProc.NDSS,InternetSociety,(pp.

8–15).

[8] Moser, Andreas; Kruegel, Christopher; Kirda, Engin.

(2007). Limits of Static Analysis for Malware

Detection, in Proc. 23rd Annual Computer Security

Applications Conference (ACSAC), (pp. 421–430).

[9] Martignoni, Lorenzo et al. (2008). A Behavior-Based

Approach to Malware Detection, in Proc. IEEE

International Conference on Malware, (pp. 51–60).

[10] Carrera, Elián and Erdélyi, Gergely. (2004). Digital

Genome Mapping – Advanced Binary Malware

Analysis, Virus Bulletin Conference, (pp. 187–197).

[11] Lindorfer, Martina; Kolbitsch, Clemens; Milani

Comparetti, Paolo. (2011). Detecting Environment-

Sensitive Malware, in Proc. Recent Advances in

Intrusion Detection (RAID), (pp. 338–357).

[12] Vigna, Giovanni et al. (2004). An Intrusion

DetectionTool for Fast Analysis of Malware

Behavior, in Proc.10th ACM Conference on

Computer andCommunications Security (CCS), (pp.

273–282).

[13] Souri, Amir and Hosseini, Reza. (2018). A State-of-

the- ArtSurveyof Malware Detection

ApproachesUsing Data Mining Techniques, Human-

centric Computing and Information Sciences, Vol. 8,

(pp. 1–22).

[14] Zhang, Jing and Li, Shouhuai. (2020). Characterizing

and Detecting Polymorphic Malware Variants Using

IntermediateLanguage,IEEEAccess,Vol.8,(pp.47832–

47847).

[15] Ugarte-Pedrero, Xavier et al. (2016). SoK: Deep

Packer Inspection: A Longitudinal Study of the

Complexity of Run-

TimePackers,inProc.IEEESymposiumonSecurity and

Privacy, (pp. 659–673).

[16] Royal, Paul et al. (2006). PolyUnpack: Automating

the Hidden-Code Extraction of Unpack-Executing

Malware, in Proc. 22nd Annual Computer Security

Applications Conference (ACSAC), (pp. 289–300).

